

Similarity versus Supervision: Best Approaches for HS Code Prediction

Sédrick Stassin, Otmane Amel, Sidi Ahmed Mahmoudi and Xavier Siebert

01 - THE TASK

02 - THE APPROACHES

02.1 - SIMILARITY-BASED APPROACH

Top-k similarity Results

HS Code recommendations

02.2 - SUPERVISION-BASED APPROACH

03 - DATASETS

04 - RESULTS

04.1 - SIMILARITY-BASED # of Top-k \mathbf{Model} Metric k=5digits k=1k=3 $MiniLM^3$ Chebyshev 0,647 0,9000,956MiniLM⁴ Euclidean 0,6440,961 0,910 MiniLM⁴ Minkowski 0,6440,9080,961 DistilUSE⁵ 0,8780,950Manhattan 0,621MiniLM⁴ 0,952Euclidean 0,6200,889 MiniLM⁴ 0,6200,887 0,951 Minkowski DistilRoberta⁶ 0,883 Manhattan 0,621 0,9470,618 $MiniLM^7$ 10 0,8800,947Manhattan MPNet⁸ 0,6170,890 0,948Cosine

Table 1: Top-1, top-3, and top-5 accuracy of the semantic similarity-based approach with respect to the sentence embedding model and distance metric used.

Recommendation for each HS code available

04.2 - SUPERVISION-BASED

# of	Min. data	# of	$\mathbf{Top-k}$			Model
digits	/ class	classes	k=1	k=3	k=5	Wiodei
6	600	13	0.838	0.930	0.933	
	400	34	0.575	0.649	0.718	$MiniLM^3$
	50	209	0.302	0.319	0.330	
8	600	13	0.844	0.885	0.918	
	400	33	0.633	0.662	0.664	$MiniLM^9$
	50	209	0.282	0.294	0.316	
10	600	13	0.895	0.926	0.928	
	400	32	0.629	0.703	0.710	$MiniLM^3$
	50	209	0.336	0.353	0.364	

Table 2: Top-1, top-3, and top-5 accuracy of supervised models with respect to the minimum number of samples per class.

Performance drops with fewer min. samples per class

30% top-1 acc. for 209 classes ----- Similarity : 60% top-1

for 1,196 classes

Added difficulty: Handling out-of-distribution classes

06 - CONCLUSION

<u>Similarity-based approach</u>: MPNet achieves 89% and 94.8% top-3 and top-5 acc. across 1,196 classes for HS10 prediction

<u>Supervised-based approach</u>: worse performance + not scaling well with classes + not handling out-of-distribution classes

07 - CONTACT DETAILS

sedrick.stassin@umons.ac.be sidi.mahmoudi@umons.ac.be

otmane.amel@umons.ac.be xavier.siebert@umons.ac.be